

Extensions of Alspach's theorem to regular multipartite tournaments

Yubao Guo

Institute for Mathematics of Information Processing

RWTH Aachen University, 52056 Aachen, Germany

June 20, 2022

Outline

Terminology and notation Semicomplete digraphs, tournaments Semicomplete multipartite digraphs, c-partite tournaments Extensions of Alspach's theorem to multipartite tournaments

- **1** Terminology and notation
- 2 Semicomplete digraphs, tournaments
 - Rédei's theorem and Camion's theorem
 - Moon's theorem and Alspach's theorem
- **3** Semicomplete multipartite digraphs, *c*-partite tournaments
 - k-cycle in semicomplete multipartite digraphs
 - (c + 1)-cycles in *c*-partite tournaments
- Extensions of Alspach's theorem to multipartite tournaments
 - Extension I: quasi p-arc-pancyclic regular tournaments
 - Extension II: quasi₁-arc-pancyclic regular tournaments
 - Extension III: quasi o-arc-pancyclic regular tournaments
 - Extension IV: quasi nl-arc-pancyclic regular tournaments
 - Extension V: arc-pandashcyclic regular tournaments
 - Extension VI: quasi ps-arc-pancyclic regular tournaments

Digraph, path, cycle, *k*-strong

D = (V(D), A(D)): a finite digraph D with the vertex-set V(D) and the arc-set A(D) without multiple arcs and loops.

Outline

• $xy \in A(D)$: $x \to y$ or x dominates y or y is dominated by x.

paths in digraphs	:	directed paths
cycles in digraphs	:	directed cycles
a <i>t</i> -cycle	:	a cycle of length t

• A digraph *D* is strong if for any two vertices *x*, *y* of *D*, there is a path from *x* to *y* and a path from *y* to *x*.

Rédei's theorem and Camion's theorem Moon's theorem and Alspach's theorem

Semicomplete digraphs, tournaments

- A digraph *D* is semicomplete if for any two different vertices *x* and *y* of *D* there is at least one arc between them.
- A digraph *D* is called tournament if for any two different vertices *x* and *y* of *D* there is exactly one arc between them, or

a tournament is an orientation of a complete graph,

or

a tournament is a semicomplete digraph without cycles of length 2.

Rédei's theorem and Camion's theorem Moon's theorem and Alspach's theorem

Hamiltonian path/cycle in tournaments

Theorem 1 (Rédei, 1934)

Every tournament contains a Hamiltonian path.

• Hamiltonian path of a digraph *D*: a path containing all vertices of *D*.

Theorem 2 (Camion, 1959)

Every strong tournament contains a Hamiltonian cycle.

• Hamiltonian cycle of a digraph *D*: a cycle containing all vertices of *D*.

Rédei's theorem and Camion's theorem Moon's theorem and Alspach's theorem

Two most famous theorems on tournaments

Theorem 3 (Moon, 1966)

Every strong tournament is vertex-pancyclic.

Theorem 4 (Alspach, 1967)

Every regular tournament is arc-pancyclic.

- A vertex or an arc of a digraph D on n ≥ 3 vertices is called pancyclic if it is contained in a k-cycle for all k ∈ {3,...,n}.
- A digraph *D* is called vertex-pancyclic (arc-pancyclic, respectively) if every vertex (every arc, respectively) of *D* is pancyclic.
- A digraph D is regular if there is an integer k such that $d^+(x) = d^-(x) = k$ for every vertex $x \in V(D)$.

c-cycle in semicomplete multipartite digraphs c + 1)-cycles in c-partite tournaments

An example of semicomplete multipartite digraphs

Figure : A semicomplete 3-partite digraph

c-cycle in semicomplete multipartite digraphs c + 1)-cycles in c-partite tournaments

Semicomplete multipartite digraphs (SMD's), multipartite tournaments (MT's)

- A semicomplete *c*-partite digraph *D* consists of *c* disjoint vertex sets $V_1, V_2, ..., V_c$ such that for every pair *x*, *y* of vertices, the following conditions are satisfied:
 - (1) x and y are non-adjacent, if $x, y \in V_i$, $1 \le i \le c$;
 - (2) there is at least one arc between x and y, if $x \in V_i$ and $y \in V_j$ with $i \neq j$, $1 \leq i, j \leq c$.
- A semicomplete multipartite digraph without a cycle of length 2 is called a multipartite tournament.
- Tournaments \subset Multipartite tournaments

 \subset Semicomplete multipartite digraphs,

since a tournament with n vertices is an n-partite tournament.

k-cycle in semicomplete multipartite digraphs (c + 1)-cycles in *c*-partite tournaments

k-cycle in semicomplete multipartite digraphs

Theorem 5 (Bondy, 1976)

- (1) Every strong semicomplete c-partite ($c \ge 3$) digraph contains a k-cycle for all $k \in \{3, 4, ..., c\}$.
- (2) If D is a strong semicomplete c-partite ($c \ge 5$) digraph, in which each partite set has at least two vertices, then D contains a k-cycle for some k > c.

Problem 6 (Bondy, 1976)

Let D be a strong c-partite ($c \ge 5$) tournament, in which each partite set has at least 2 vertices. Does D contain a (c + 1)-cycle ?

A counterexample was found by Gutin in 1982, Balakrishnan and Paulraja in 1984.

k-cycle in semicomplete multipartite digraphs (c + 1)-cycles in *c*-partite tournaments

(c+1)-cycles in *c*-partite tournaments

Theorem 7 (Guo and Volkmann, 1996)

Let D be a strong c-partite ($c \ge 5$) tournament, each of whose partite sets has at least 2 vertices. Then D has no (c + 1)-cycle if and only if D is isomorphic to a member of W_m , where m - 1 is the diameter of D.

Problem 8 (Guo and Volkmann, 1996)

Give a characterization of strong semicomplete c-partite ($c \ge 5$) digraphs, in which each partite set has at least 2 vertices and there is no (c + 2)-cycle or (c + k)-cycle for some $k \ge 3$.

Theorem 9 (Yeo, 1997)

Every regular c-partite tournament with $c \ge 5$ is vertex-pancyclic.

Extension I: quasi p-arc-pancyclic regular tournaments Extension II: quasi p-arc-pancyclic regular tournaments Extension III: quasi g-arc-pancyclic regular tournaments Extension IV: quasi g-arc-pancyclic regular tournaments Extension V: arc-pandashcyclic regular tournaments Extension VI: quasi g-arc-pancyclic regular tournaments

Extension of pancyclicities to SMD's I: quasi p-pancyclicities

Theorem 10 (Goddard and Oellermann, 1991)

Every vertex of a strong semicomplete c-partite ($c \ge 3$) digraph is in a cycle that contains vertices from exactly k partite sets for all k with $3 \le k \le c$,

- A quasi p-k-cycle (quasi p-(k 1)-path, respectively) in a semicomplete multipartite digraph is a cycle (path, respectively) which contains vertices from exactly k different partite sets.
- A vertex (an arc, respectively) in a semicomplete *c*-partite (*c* ≥ 3) digraph is quasi p-pancyclic, if it lies on a quasi p-k-cycle for all 3 ≤ k ≤ c.

Extension I: quasi p-arc-pancyclic regular tournaments Extension II: quasi n-arc-pancyclic regular tournaments Extension III: quasi n-arc-pancyclic regular tournaments Extension IV: quasi n-arc-pancyclic regular tournaments Extension V: arc-pandashcyclic regular tournaments Extension VI: quasi n-arc-pancyclic regular tournaments

Generalization of Moon's theorem to SMD's I: quasi p-vertex-pancyclicity

Theorem 10 (Goddard and Oellermann, 1991) *Every strong* semicomplete *c*-partite ($c \ge 3$) digraph is quasi_p-vertex-pancyclic.

Extension I: quasi p-arc-pancyclic regular tournaments Extension II: quasi p-arc-pancyclic regular tournaments Extension III: quasi p-arc-pancyclic regular tournaments Extension IV: quasi p-arc-pancyclic regular tournaments Extension V: arc-pandashcyclic regular tournaments Extension VI: quasi p-arc-pancyclic regular tournaments

Regular multipartite tournaments

Lemma 11

Let D be a c-partite tournament with partite sets $V_1, V_2, ..., V_c$. If D is regular, then $|V_1| = |V_2| = \cdots = |V_c|$.

Proof: Let x_i be a vertex in V_i for i = 1, 2, ..., c. Since D is regular, there exists an integer k such that

$$k = d^+(x_i) = d^-(x_i) = \frac{1}{2} \sum_{j \neq i} |V_j|$$
 for $i = 1, 2, ..., c$.

It follows that $|V_1| = |V_2| = \cdots = |V_c|$.

Extension I: quasi p-arc-pancyclic regular tournaments Extension II: quasi -arc-pancyclic regular tournaments Extension III: quasi -arc-pancyclic regular tournaments Extension IV: quasi n-arc-pancyclic regular tournaments Extension V: arc-pandashcyclic regular tournaments Extension VI: quasi n-arc-pancyclic regular tournaments

Generalization of Alspach's theorem to MT's I: quasi p-arc-pancyclicity

Theorem 12 (Guo and Kwak, 1998)

Let D be a regular c-partite tournament with $c \ge 3$. If the cardinality common to all partite sets of D is odd, then D is quasi_p-arc-pancyclic.

Extension II: quasi p-arc-pancyclic regular tournaments Extension III: quasi p-arc-pancyclic regular tournaments Extension III: quasi p-arc-pancyclic regular tournaments Extension IV: quasi p-arc-pancyclic regular tournaments Extension V: arc-pandashcyclic regular tournaments Extension VI: quasi p-arc-pancyclic regular tournaments

Extension of pancyclicities to SMD's II: quasi - pancyclicities

Theorem 13 (Gutin, 1993)

If D is a strong semicomplete c-partite ($c \ge 3$) digraph, and if v is the only vertex in one of the partite sets, then D has a t-cycle containing v for every t with $3 \le t \le c$.

Theorem 14 (Guo and Volkmann, 1994)

Let D be a strong c-partite ($c \ge 3$) tournament. Then every partite set of D contains at least one vertex which lies on a t-cycle for all $t \in \{3, 4, ..., c\}$.

• A vertex (an arc, respectively) in a semicomplete *c*-partite $(c \ge 3)$ digraph is quasi₁-pancyclic, if it lies on a *t*-cycle for all $3 \le t \le c$.

Extension II: quasi p-arc-pancyclic regular tournaments Extension III: quasi p-arc-pancyclic regular tournaments Extension III: quasi p-arc-pancyclic regular tournaments Extension IV: quasi p-arc-pancyclic regular tournaments Extension V: arc-pandashcyclic regular tournaments Extension VI: quasi p-arc-pancyclic regular tournaments

Generalization of Moon's theorem to SMD's II: quasi-vertex-pancyclicity

Theorem 14 (Guo and Volkmann, 1994) Every partite set of a strong c-partite ($c \ge 3$) tournament contains at least one quasi₁-pancyclic vertex.

Extension II: quasi p-arc-pancyclic regular tournaments Extension III: quasi p-arc-pancyclic regular tournaments Extension III: quasi p-arc-pancyclic regular tournaments Extension IV: quasi p-arc-pancyclic regular tournaments Extension V: arc-pandashcyclic regular tournaments Extension VI: quasi p-arc-pancyclic regular tournaments

Generalization of Alspach's theorem to MT's II: quasi - arc-pancyclicity

Theorem 15 (Guo & Kwak, 1998)

Let T be a regular c-partite tournament. If every arc of T is in a 3-cycle, then each arc of T is also in a k-cycle for all $3 \le k \le c$, i.e., T is quasi₁-arc-pancyclic.

Extension 1: quasi p-arc-pancyclic regular tournaments Extension II: quasi j-arc-pancyclic regular tournaments Extension III: quasi arc-pancyclic regular tournaments Extension IV: quasi ni-arc-pancyclic regular tournaments Extension VI: quasi ni-arc-pancyclic regular tournaments Extension VI: quasi ni-arc-pancyclic regular tournaments

Extension of pancyclicities to SMD's III: quasi_o-pancyclicities

Definition 16 (Guo, 1996)

An outpath of a vertex x (an arc xy, respectively) in a digraph D is a path starting at x (xy, respectively) such that x dominates the endvertex of the path only if the endvertex also dominates x in D.

Note that in a tournament, a vertex x (an arc xy, respectively) is in a cycle of length k if and only if x (xy, respectively) has an outpath of length k - 1.

Extension I: quasi p-arc-pancyclic regular tournaments Extension II: quasi p-arc-pancyclic regular tournaments Extension III: quasi g-arc-pancyclic regular tournaments Extension IV: quasi g-arc-pancyclic regular tournaments Extension V: arc-pandashcyclic regular tournaments Extension VI: quasi g-arc-pancyclic regular tournaments

Extension of pancyclicities to SMD's III: quasi o-pancyclicities

- A vertex (an arc xy, respectively) in a semicomplete c-partite (c ≥ 3) digraph is quasi o-pancyclic, if it lies on an outpath of length k − 1 for all k ∈ {3,4,...,c}.
- A semicomplete *c*-partite ($c \ge 3$) digraph *D* is quasi_o-vertexpancyclic (quasi_o-arc-pancyclic, respectively), if every vertex (arc, respectively) of *D* is quasi_o-pancyclic.

Extension 1: quasi p-arc-pancyclic regular tournaments Extension II: quasi -arc-pancyclic regular tournaments Extension III: quasi o-arc-pancyclic regular tournaments Extension IV: quasi ni-arc-pancyclic regular tournaments Extension V: arc-pandashcyclic regular tournaments Extension VI: quasi ni-arc-pancyclic regular tournaments

Generalization of Moon's theorem to SMD's III: quasi o-vertex-pancyclicity

Theorem 17 (Guo, 1996)

Every strong semicomplete c-partite ($c \ge 3$) digraph is quasi_o-vertex-pancyclic.

Extension 1: quasi p-arc-pancyclic regular tournaments Extension II: quasi j-arc-pancyclic regular tournaments Extension III: quasi arc-pancyclic regular tournaments Extension IV: quasi ni-arc-pancyclic regular tournaments Extension VI: quasi ni-arc-pancyclic regular tournaments Extension VI: quasi ni-arc-pancyclic regular tournaments

Generalization of Alspach's theorem to MT's III: quasi o-arc-pancyclicity

Theorem 18 (Guo, 1996)

Every regular c-partite ($c \ge 3$) tournament is quasi_o-arc-pancyclic.

Theorem 19 (Zhang and Zhou, 1997)

Let T be an almost regular c-partite ($c \ge 8$) tournament. If each partite set of T has at least 2 vertices, then every arc of T has an outpath of length k - 1 for all $k \in \{4, ..., c\}$.

Theorem 20 (Yeo, 1998)

Let T be an almost regular c-partite ($c \ge 8$) tournament with $|V(D)| \ge 107$. Then every arc of T has an outpath of length k - 1 for all $k \in \{4, 5, ..., |V(D)|\}$.

Extension I: quasi p-arc-pancyclic regular tournaments Extension II: quasi p-arc-pancyclic regular tournaments Extension III: quasi p-arc-pancyclic regular tournaments Extension IV: quasi p-arc-pancyclic regular tournaments Extension V: arc-pandschcyclic regular tournaments Extension VI: quasi p-arc-pancyclic regular tournaments

Extension of pancyclicities to SMD's IV: quasi nl-pancyclicities

Question (Guo, 1994): Let D be a strong semicomplete c-partite $(c \ge 3)$ digraph with $|V(D)| = n \ge 3$.

 $\min_{v \in V(D)} |\{\ell \ge 3 | v \text{ lies on an } \ell\text{-cycle in } D\}| \ge f(c, n) = ?$

Theorem 21 (Guo, Pinkernell and Volkmann, 1997)

Let D be a strong semicomplete c-partite ($c \ge 3$) digraph. Then every vertex of D is in a k-cycle or (k + 1)-cycle for all $k \in \{3, 4, ..., c\}$.

Answer (Guo, 2021): c - 2.

Extension I: quasi p-arc-pancyclic regular tournaments Extension II: quasi p-arc-pancyclic regular tournaments Extension III: quasi p-arc-pancyclic regular tournaments Extension IV: quasi p-arc-pancyclic regular tournaments Extension V: arc-pandashcyclic regular tournaments Extension VI: quasi p-arc-pancyclic regular tournaments

Extension of pancyclicities to SMD's IV: quasi nl-pancyclicities

Theorem 22 (Guo and Surmacs, 2022)

Every vertex of a strong semicomplete c-partite digraph D, where $c \ge 3$, belongs to c - 2 cycles whose lengths are at least 3 and are pairwise distinct.

- A vertex (an arc xy, respectively) in a semicomplete c-partite (c ≥ 3) digraph is quasi nl-pancyclic, if it lies on at least c − 2 cycles, whose lengths are at least 3 and pairwise distinct.
- A semicomplete *c*-partite ($c \ge 3$) digraph *D* is quasi_{nl}-vertexpancyclic (quasi_{nl}-arc-pancyclic, respectively), if every vertex (arc, respectively) of *D* is quasi_{nl}-pancyclic.

Extension I: quasi p-arc-pancyclic regular tournaments Extension II: quasi p-arc-pancyclic regular tournaments Extension III: quasi p-arc-pancyclic regular tournaments Extension IV: quasi p-arc-pancyclic regular tournaments Extension V: arc-pandschcyclic regular tournaments Extension VI: quasi p-arc-pancyclic regular tournaments

Generalization of Moon's theorem to SMD's IV: quasi nl-vertex-pancyclicity

Theorem 22 (Guo and Surmacs, 2022) Every strong semicomplete *c*-partite ($c \ge 3$) digraph is quasi_{nl}-vertex-pancyclic.

Extension I: quasi p-arc-pancyclic regular tournaments Extension II: quasi p-arc-pancyclic regular tournaments Extension III: quasi p-arc-pancyclic regular tournaments Extension IV: quasi p-arc-pancyclic regular tournaments Extension V: arc-pandashcyclic regular tournaments Extension VI: quasi p-arc-pancyclic regular tournaments

Generalization of Alspach's theorem to MT's IV: quasi nl-arc-pancyclicity

Conjecture 1 (Guo, 2022)

Every regular c-partite tournament with $c \ge 3$ is quasi_{nl}-arc-pancyclic.

Extension I: quasi p-arc-pancyclic regular tournaments Extension II: quasi p-arc-pancyclic regular tournaments Extension III: quasi p-arc-pancyclic regular tournaments Extension IV: quasi p-arc-pancyclic regular tournaments Extension V: arc-pandashcyclic regular tournaments Extension VI: quasi p-arc-pancyclic regular tournaments

Extension of pancyclicities to SMD's V: pandashcyclicities

Definition 23 (Guo, 2022)

Let *D* be a semicomplete *c*-partite ($c \ge 3$) digraph with *n* vertices. A dashcycle $C := v_1 v_2 \cdots v_t v_1$ of length *t*, where $3 \le t \le n$ and $v_i \in V(D)$ for $1 \le i \le t$, is a *t*-cycle or consists of some vertex disjoint paths of *D*, which satisfies the following conditions:

(1)
$$v_{i+1}$$
 dominates v_i only if v_i also dominates v_{i+1} in D for $i = 1, 2, ..., t$, where $v_{t+1} = v_1$;

(2) For $3 \le t \le c+1$, C has at least t-1 arcs, and for $c+2 \le t \le n$, C has at least c arcs.

Note that in a tournament, a dashcycle of length t is a t-cycle.

Extension I: quasi p-arc-pancyclic regular tournaments Extension II: quasi p-arc-pancyclic regular tournaments Extension III: quasi p-arc-pancyclic regular tournaments Extension IV: quasi p-arc-pancyclic regular tournaments Extension V: arc-pandashcyclic regular tournaments Extension VI: quasi p-arc-pancyclic regular tournaments

Extension of pancyclicities to SMD's V: pandashcyclicities

Definition 24 (Guo, 2022)

Let *D* be a semicomplete *c*-partite ($c \ge 3$) digraph with *n* vertices. A dashpath $P := v_1v_2 \cdots v_t$ of length t - 1, where $3 \le t \le n$ and $v_i \in V(D)$ for $1 \le i \le t$, is a path of length t - 1 or consists of some vertex disjoint paths of *D*, which satisfies the following conditions:

(1)
$$v_{i+1}$$
 dominates v_i only if v_i also dominates v_{i+1} in D for $i = 1, 2, ..., t - 1$;

(2) For
$$3 \le t \le c+1$$
, C has at least $t-2$ arcs, and for $c+2 \le t \le n$, C has at least $c-1$ arcs.

Note that in a tournament, a dashpath of length t - 1 is a (t - 1)-path.

Extension I: quasi p-arc-pancyclic regular tournaments Extension II: quasi p-arc-pancyclic regular tournaments Extension III: quasi p-arc-pancyclic regular tournaments Extension IV: quasi p-arc-pancyclic regular tournaments Extension V: quasi p-arc-pancyclic regular tournaments Extension VI: quasi p-arc-pancyclic regular tournaments

Extension of pancyclicities to SMD's V: pandashcyclicities

- A vertex (an arc xy, respectively) in a semicomplete c-partite (c ≥ 3) digraph D is pandashcyclic, if it lies on a dashcycle of length t for all t ∈ {3,4,..., |V(D)|}.
- A semicomplete c-partite (c ≥ 3) digraph D is vertex-pandashcyclic (arc-pandashcyclic, respectively), if every vertex (arc, respectively) of D is pandashcyclic.

Extension I: quasi p-arc-pancyclic regular tournaments Extension II: quasi p-arc-pancyclic regular tournaments Extension III: quasi p-arc-pancyclic regular tournaments Extension IV: quasi p-arc-pancyclic regular tournaments Extension V: quasi p-arc-pancyclic regular tournaments Extension VI: quasi p-arc-pancyclic regular tournaments

Generalization of Moon's theorem to SMD's V: vertex-pandashcyclicity

Theorem 25 (Guo, 2022)

Every strong semicomplete c-partite ($c \ge 3$) digraph is vertex-pandashcyclic.

Extension I: quasi p-arc-pancyclic regular tournaments Extension II: quasi p-arc-pancyclic regular tournaments Extension III: quasi p-arc-pancyclic regular tournaments Extension IV: quasi p-arc-pancyclic regular tournaments Extension V: arc-pandashcyclic regular tournaments Extension VI: quasi p-arc-pancyclic regular tournaments

Generalization of Alspach's theorem to MT's V: arc-pandashcyclicity

Theorem 26 (Guo, 2022)

Every regular c-partite ($c \ge 3$) tournament is arc-pandashcyclic.

Extension I: quasi p-arc-pancyclic regular tournaments Extension II: quasi p-arc-pancyclic regular tournaments Extension III: quasi p-arc-pancyclic regular tournaments Extension IV: quasi p-arc-pancyclic regular tournaments Extension V: arc-pandashcyclic regular tournaments Extension VI: quasi p-arc-pancyclic regular tournaments

Extension of pancyclicities to SMD's VI: quasi ps-arc-pancyclicity

Definition 27

Let $D = (V_1 \uplus V_2 \uplus \cdots \uplus V_c, A)$ be a semicomplete *c*-partite $(c \ge 3)$ digraph.

 An arc x_ix_j of D with x_i ∈ V_i and x_j ∈ V_j is called quasi_{ps}-pancyclic in D, if for all t ∈ {3,..., c}, D has a path from V_j to V_i, which contains vertices from exactly t partite sets.

Extension I: quasi p-arc-pancyclic regular tournaments Extension II: quasi p-arc-pancyclic regular tournaments Extension III: quasi p-arc-pancyclic regular tournaments Extension IV: quasi p-arc-pancyclic regular tournaments Extension V: arc-pandashcyclic regular tournaments Extension VI: quasi p-arc-pancyclic regular tournaments

Background for introducing quasi ps-pancyclic arc

Corollary 28 (Bang-Jensen, Maddaloni and Simonsen, 2013)

There is a polynomial algorithm for deciding whether a multipartite tournament D with given distinct partite sets V_i , V_j contains a quasi_p-Hamiltonian path between some vertex $x \in V_i$ and some vertex $y \in V_j$.

• To decide whether a multipartite tournament *D* contains a quasi _p-Hamiltonian path between two prescribed vertices:

 \mathcal{NP} -complete.

	Outline
Terminology	and notation
Semicomplete digraphs,	tournaments
Semicomplete multipartite digraphs, c-partite	tournaments
Extensions of Alspach's theorem to multipartite	tournaments

Extension I: quasi p-arc-pancyclic regular tournaments Extension II: quasi p-arc-pancyclic regular tournaments Extension III: quasi p-arc-pancyclic regular tournaments Extension IV: quasi p-arc-pancyclic regular tournaments Extension V: arc-pandashcyclic regular tournaments Extension VI: quasi p-arc-pancyclic regular tournaments

Generalization of Alspach's theorem to MT's VI: quasi ps-arc-pancyclicity

Conjecture 2 (Guo, 2022)

Every regular c-partite tournament with $c \ge 3$ is quasi_{ps}-arc-pancyclic.

Remark: quasi $_{p}$ -arc-pancyclicity \implies quasi $_{ps}$ -arc-pancyclicity

Outline Terminology and notation Semicomplete digraphs, tournaments Semicomplete multipartite digraphs, <i>c</i> -partite tournaments Extensions of Alspach's theorem to multipartite tournaments	Extension I: quasi p-arc-pancyclic regular tournaments Extension II: quasi p-arc-pancyclic regular tournaments Extension III: quasi p-arc-pancyclic regular tournaments Extension IV: quasi n-arc-pancyclic regular tournaments Extension V: arc-pandashcyclic regular tournaments Extension VI: quasi ps-arc-pancyclic regular tournaments
---	--

Thanks for your attention!